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Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects
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We present an analysis of the Duschinsky effect and its application to real molecules. We discuss the many
subtle aspects of applying the theory to calculations and give examples of a nonlinear normal coordinate
transformation. We show how to judge if nonlinear effects are small enough to be neglected through use of
the zero-order axis-switching approximation, which allows calculation of Fra@dndon factors (FCF).
However, even with the zero-order axis-switching approximation, nonorthogonality can occur in the Duschinsky
matrix, and this must be corrected to allow proper FCF calculations. We have calculated the Duschinsky
effect for two systems that form the anion in an electron-transfer ion pair, \(C&yd Co(COj . The
formation of theDsy neutral vanadium species is accompanied by a small geometric distortion and small
Duschinsky effect, despite the change in point group fron\e discuss how to perform the calculations

to properly represent degenerate vibrations and how to test if the linear approximation is adequate. The
tetrahedral cobalt anion undergoes a much larger geometrical distortion, which results in a larger Duschinsky
effect, upon formation of the nearlys, neutral species. The analysis of the cobalt system, wthsymmetry

for the neutral, demonstrates the methods required when there is no simplification from symmetry. These
two examples show the validity of the zero-order axis-switching approximation. The cobalt complex has
much larger reorganization energy and a much greater dependence of reorganization energy on the choice of
reference state, as expected when the Duschinsky effect is larger. We briefly outline the method of applying
these computations to electron-transfer rate calculations.

Introduction K=LTm"2C - x%) (3)
When a molecule undergoes an electronic transition, the £=LQ (4)

change in electronic state is usually accompanied by a change

in the normal modes of vibration. This phenomenon was first E= m2(x — XO) = m”zp (5)

considered in 1937 by Duschinskgnd is therefore given the

name the Duschinsky effect. The result is that normal modes wherex is the vector of Cartesian coordinateg/is a diagonal

of one state are no longer orthogonal to the normal modes of matrix with each atom’s mass appearing three timess the

the other state. A result is that the overlap integrals of the vector of equilibrium coordinateg, is the Cartesian displace-

vibrational wave functions, or FraneiCondon factors (FCF), ment coordinate vectoré is the mass weighted Cartesian

are no longer separable into products of one-dimensional FCFdisplacements coordinatds,is the normal coordinate matrix,

calculations, and one must use multidimensional FCF. We haveQ are normal coordinateg is the normal coordinate displace-

recently shown that the additional complexity of multidimen- ment vector, and is the Duschinsky matrix. Also, primed terms

sional FCF can lead to large effects on electron-transfer fates. refer to the initial state and unprimed terms refer to the final

Therefore, a treatment of the Duschinsky effect is required that state. The matrix. transforms the mass-weighted Cartesian

demonstrates how to compute the Duschinsky effect for complex displacement coordinates,into normal coordinate). K gives

molecules. Furthermore, there are many subtle points in usingthe displacements between the equilibrium structures of the two

and interpreting the theory that are illustrated through specific states in terms of initial state normal coordinates. The two states

calculations on complex molecules involved in electron transfer must be oriented so that they have the largest number of

within ion pairs. symmetry elements in common with the center of mass at the
For complex molecules, it is difficult to generalize the origin; however, this condition is not sufficient to prevent

relationship between the two sets of normal modes involved in potential nonlinear effects from axis-switching that must occur

a transition. Duschinsky proposed that the two sets of normal between the two states.

modes were related by a linear transformation. This is analogous o

to a simple multidimensional rotation and translation and leads AXis-Switching Effects

to the following?3-5 Nonlinear Effects. Many authors have developed methods
to calculate multidimensional FG310 All of this work has
Q=JO+K 1) assumed a linear transformation between sets of normal
I1=LTL ) coordinates, as was suggested by Duschinsky. However, Duschin-

sky’s analysis ignored complications arising from the separation
of vibrations, translations, and rotations. These complications
* E-mail: spears@chem.nwu.edu. Fax: (847) 491-7713. were resolved for a single state by Eckagt around the same
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time as Duschinsky’s work. Later, Hougen and Wat3showed Zero-Order Axis-Switching Approximation. The transfor-

that in order to satisfy the Eckart conditions for both states, mation between sets of normal coordinates can be made linear.
axis-switching effects need to be taken into account. This resultsThis is accomplished with the zero-order axis-switching ap-
in eq 6, which ensures that the rotational and translational proximation. This approximation is accomplished by replacing
coordinates of both states are equal to zero. Basically, this meansq 9 with eq 102

that the coordinate system must rotate upon a change in

electronic state in order to satisfy these conditions. These axis- N D X3_»
switching effects can lead to experimentally observable phe- 0] -1{,0 —

; . . ; Xai—q [ x| (T Xsi—1 ||=0 10
nomena. Experimental observation of nominally forbidden y4 M ot (™) ot (10)
rotational lines in the gas-phase spectrum of acetylene has been X3 X3

explained by including axis-switching effedts.The axis-

switching also makes the transformation nonlinear since the axis-
switching matrix depends on the instantaneous coordinates,
which are continuously changing as the molecule vibrates. With
axis-switching taken into account, eqs 2 and 3 become egs 7

Equation 10 is the result of ignoring the displacements in eq 9.
This results in an approximate linear transformation and allows
the use of standard equations for Fran€ondon factors. One
problem is that there are eight possible solutions to édD®.
the eight, four can be ruled out becastis a rotation matrix,

and 8%
so the determinant must be equahta. Of the four remaining
0 O , solutions, the proper choice is obvious from the relative
X'+ p=BKX"+p) (6) orientation of the two states after rotation. Solving eq 10 for
— the proper solution can be difficult. Fortunately, a closed form
J=L"BL (7) solution has been derived which easily gives all eight solufions.
The first step is to form the following % 3 matrix.
K= LrTml/Z(B—lXO _ XOI) (8) N
, Cop = Y MI(x)o(x)y] (11)
0 0 af o\
N [Xsi—2 P3i—2 T X2 i=
o -1 0
Xz T . Xy =0 9
£ M ot . Pai-1 o it ) In eq 11,0 and3 denotex, y, andz. For planar molecules,,
X3 p3t Xy is set equal to unity. Diagonalization of the prodGe¢C results
) _ o in a matrix, R, with eigenvectors as columns, and the corre-
Here,B is a 3N x 3N block diagonal matrix with the X 3 sponding diagonal matrix of eigenvalugsAn additional matrix

Hougen and Watson axis-switching matrix,appearing along A, which has+1 or —1 along the diagonal, is needed. The

the diagonal.T is given by eq 9 and the sum is over each equation forT? is

atom®12 The axis-switching matrixT, depends on the instan-

taneous coordinates and gives rise to the nonlinearity. Fortu- T°= RAAYV2RTC? (12)

nately, the axis-switching effects, and the resulting complica-

tions, occur only for certain vibrational modes, namely modes with the eight solutions arising from the eight possibilities for

that are of the same symmetry as a rotafion. A. Again, four solutions are ruled out because the determinant
The following discussion assumes that the point group is of T° must be+1. Of the remaining four, the correct choice is

based on only the symmetry elements that are common to bothmade by converting t&8° and applying the rotation t&” and

states, with a relative axis orientation having the maximum comparing the orientation t&?, or equivalently rotating® by

number of symmetry elements in common. The symmetry may (B%~! and comparing ta®. The choice that results in structures

be lower than that of either state by itself. For example, the with corresponding atoms in closest proximity is correct. In

ground state of ethylene is plan@g,, and the excited state is  addition, Ozkan describes a method that works if only a

thought to have one CHgroup rotated by 90 with Dy 2-dimensional rotation is needed for the axis rotafion.
symmetry. To achieve the proper relative axis orientation, one  For the high symmetry point groups (n6t, Cs, Ci, Cp, Cnn,
state must be rotated by 45esulting in a common Ppoint or S, zero-order axis-switching is not required if the two states
group. of the molecule are oriented in such a way that they have the

Axis-switching effects occur only for displacements along highest number of common symmetry eleméenttowever, if
modes of the same symmetry as a rotation. Axis-switching the states are not aligned in such a manner, zero-order axis-
effects occur because the motions caused by displacements alongwitching is necessary to align the states in the proper manner.
vibrational normal modes of one state cannot be described bylIn the low symmetry point group<y, Cs, Ci, Cy, Cin, ands,),
displacements along a linear combination of only vibrational the zero-order axis-switching always must be included to
normal modes of the other state. To properly describe theseproperly orient the equilibrium structures of the two states
motions we must include rotational coordinat@aViolecules relative to each other. In this case, a maximum coincidence of
of high enough symmetry (common point group of two states common symmetry elements still does not ensure that the Eckart
notC,, Cs, G, Cy, Cop, Or §) exhibit these effects only for certain ~ conditions are satisfied at equilibrium in both coordinate
nontotally symmetric modes. For axis-switching effects to occur systems. The application of a zero-order axis-switching method
for displaced totally symmetric modes, the common point group still leaves nonlinear effects in some vibrations, and we discuss
of the molecule must have rotations that belong to the totally this in the following paragraph.
symmetric representation. From inspection of point group tables, Since molecules are always vibrating and the instantaneous
this is true only for low symmetry(;,, Cs, Ci, C,, Cnn, andSs,) coordinates changing, even in the ground vibrational state, the
point groups. Since there can be no displacements alongzero-order approximation should lead to errors in FCF. Gener-
nontotally symmetric modes between the equilibrium structures ally, in electron transfer rate calculations and absorption and
of the two states, the overall axis-switching effects are expectedemission spectrum calculations, totally symmetric modes are
to be smaller in the higher symmetry cases. of much more importance than nontotally symmetric modes.
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This is due to the lack of displacements along nontotally this matrix must be renormalized to give an orthogonal normal
symmetric modes. For the high symmetry cases, no axis- mode matrix where."L = 1. This factor is called the reduced
switching effects occur along the totally symmetric modes, so mass in Gaussian.
the ignored nonlinearities occur only along nondisplaced, It is essential to orient the two states with the maximum
nontotally symmetric modes. Since the important region for FCF number of common symmetry elements. A relative orientation
along nondisplaced modes is small, consisting only of the width change may be necessary because each state can be in a different
of the wave function, small nonlinear axis-switching effects will standard orientation. To ensure that the relative orientation is
occur and their neglect should be an acceptable approximation.correct, calculation off® can be performed as a test. If the
In the low symmetry cases, axis-switching and the accompany-resultingT? is the unit matrix, the states are properly oriented
ing nonlinearities do occur for displaced totally symmetric and egs 2 and 3 can be used to calculagmdK. If TC is not
modes. Since there are displacements along these modes, ththe unit matrix, then conversion & is needed and egs 7 and
important region for FCF calculation is much larger, suggesting 8 must be used to find andK. Complications may arise from
larger errors involved in ignoring the nonlinear aspect of the degenerate modes when the degeneracy in a high symmetry state
transformation. is broken in a lower symmetry state. An example of this will
However, even in the low symmetry case, the zero-order axis- be discussed in the next section. We emphasizeBhanust
switching approximation has been suggested to be a fairly goodalways be calculated for low symmetrZ Cs, Ci, C,, Cnn,
approximation as long as displacements are sfiallThis and$S,) point groups.
suggests that using a linear transformation, which is necessary
to use published methods for FCF calculations, might be a good Example Calculations for Electron Transfer
approximation for either totally symmetric or nontotally sym-
metric modes. A convenient method of computing multidimen-
sional FCF has been developed that uses recursion relations.
Nonorthogonality of the Duschinsky Matrix. There is an
additional problem when we consider modes with the same
symmetry as a rotation. Since the vibrations of one state cannot
be properly described as a linear combination of vibrations of
the other state, the Duschinsky matrix is not orthogonal and
has a determinant that is not equal to érighis results in a
violation of the sum rule for FCF. The squares of the FCF of a
vibrational level of one electronic state with all of the vibrational
levels of another electronic state should sum to unity, but do
not when the determinant of is not unity. The sum rule
violation will obviously lead to errors in absolute rate calcula-

tions, with calculated rates being too large. Errors will also occur @Mion in the ion pair Co(Cpj|V(CO)s~, which undergoes
in absorption and emission spectra, even if in arbitrary units, photoinduced electron transfer to form a radical pair which then

because the relative errors are not the same for each FCpUndergoes a spontaneous reverse electron-transfer back to the

calculated. However, this might be overcome in an approximate /0N Pair. An interesting feature of this system is that experiments
way through a renormalization of the Duschinsky matrix have shown different electron-transfer rates as a function of

although we have not tested this idea. vibrational level in the V(CQ)radical’617"B3LYP calculations

: : formed with the 6-311G basis set for vanadium and
It must be noted that the preceding analysis was performedWere per . .
using Cartesian coordinates. A similar analysis exists in the 6-311G(d,p) basis sets for carbon and oxygen. The calculations

literature using internal coordinatésdowever, this results in resultin an octahedral geometry for the anion Bgdgeometry

more complex equations and requires the determination of thefor the neutral species. The resulting atomic coordinates are

internal coordinates as a function of Cartesian coordinates, whichg'vegéngTab:je E:BLG I;or the neut(;ai spg%c!esihthe(;c—c _angl;es
is not a trivial matter with a unique correspondence. aré 95.6 an -, compared 1o In the On anion. in
addition, normal mode calculations were performed at the

optimized geometry of each state. The symmetries and frequen-
cies of the resulting vibrations are given in Table 2. In both
We have used a specific quantum chemistry package, cases, the standard orientation was in center of mass coordinates
Gaussiart? although the general method should be similar for due to the symmetry of the molecule, so it was unnecessary to
any quantum chemistry package. First, a geometry optimization translate the coordinates. From inspection of the coordinates of
and a vibrational normal mode calculation must be performed the two species, it can be seen that the two states are oriented
for both states of interest. Since the normal modes are given indifferently and do not have the maximum number of symmetry
the standard orientation, this same orientation must be used forelements in common. This is due to the way Gaussian chooses
the atomic coordinates. Since the standard orientation is not inthe standard orientation f@, andD3zy symmetries. To correct
center of mass coordinates, but instead is in center of nuclearthis, B® was calculated from eq 12.
charge coordinates, the atomic coordinates must be translated In the octahedral anion, the vibrational calculation results in
into center of mass coordinates unless the symmetry is hightwo Ay, four Ey, three Tg, six Ty, twelve Ty, and six Ty
enough that this is already the case. This has no effect on thevibrational normal modes. When treatedDgy symmetry, the
normal modes. In eq 2, the normal mode matkixis given in triply degenerate modes become A and E modes. For example,
mass-weighted coordinates, while Gaussian outputs give normalT, becomes Eand Ay, The calculated, mode correlates to
modes in coordinates that are not mass weighted. To convertfour Aig one Ay ten K, two Ay, four Az, and twelve
the normal modes to the correct type of coordinates, multiplica- modes inDzg Symmetry, as is also calculated for they neutral
tion of the matrix m2 of eq 5 and the Gaussian normal species. The application of eqs 7 and 8 results in a Duschinsky
coordinate matrix must be performed. Then, each column of matrix, J, and a displacement vectoK. The displacement

Two examples involving a state change from an anion to a
radical were selected for study because these represent the anion
half of an electron-transfer ion pair systébiS The two states
are both lowest energy states, so that standard ab initio methods
can give excellent results. We expected the anion to undergo a
geometrical distortion and change in symmetry upon formation
of the neutral radical species, resulting in substantial Duschinsky
effects. The cation half of the ion pair complex has less
geometric reorganization so that we emphasize the anion
component in order to reduce the computational effort. In
addition, the calculations remain transferable since a variety of
cations can be used to form the ion p&ir.

V(CO). The first example is V(CQ)Y°. This serves as the

Parameters from Ab Initio Calculations
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TABLE 1: Standard Orientation Atomic Coordinates (in angstroms) for V(CO)s, V(CO)s™ in Op Symmetry, and V(CO)s~ in
D3y Symmetry

Dag V(Co)e On V(CO)57 Dag V(CO)af

X y z X y z X y z
\% 0 0 0 0 0 0 0 0 0
C 0 1.701632 1.086112 0 0 1.970822 0 1.609178 1.137843
C 0 —1.701632 —1.086112 0 0 —1.970822 0 —1.609178 —1.137843
C —1.473657 —0.850816 1.086112 0 1.970822 0 —1.393589 —0.804589 1.137843
C 1.473657 0.850816 —1.086112 0 —1.970822 0 1.393589 0.804589 —1.137843
C —1.473657 0.850816 —1.086112 1.970822 0 0 —1.393589 0.804589 —1.137843
C 1.473657 —0.850816 1.086112 —1.970822 0 0 1.393589 —0.804589 1.137843
O 0 2.669554 1.690295 0 0 3.128572 0 2.554477 1.80627
O 0 —2.669554 —1.690295 0 0 —3.128572 0 —2.554477 —1.80627
O —2.311902 —1.334777 1.690295 0 3.128572 0 —2.212242  —1.277238 1.80627
O 2.311902 1.334777 —1.690295 0 —3.128572 0 2.212242 1.277238 —1.80627
O 2.311902 —1.334777 1.690295 —3.128572 0 0 2.212242 —1.277238 1.80627
O —2.311902 1.334777 —1.690295 3.128572 0 0 —2.212242 1.277238 —1.80627

TABLE 2: Calculated Vibrational Frequencies, Symmetries, and Displacements for the V(CQJV(CO)s~ System

D34 V(CO)s On V(CO)s™ D3sg V(CO)s™
v (cm) Ka Ai(cm™P v (em™h Ka Ai(cm™he y (cm™Y) Ka Ai (cmhp
21 54.46 E 0 0 54.42 Bu 0 0 52.22 Ay 0 0
V2 54.46 E 0 0 54.42 Bu 0 0 52.37 E 0 0
V3 66.2 Awy 0 0 54.42 Bu 0 0 52.37 E 0 0
Vs 8207 | 0 0 8929 T, —1.012 121 8859 A  1.752 357
Vs 8207 | 0 0 89.29 T 0.56 37 88.62 E 0 0
Ve 83.54 Ag 1.733 311 89.29 % 1.317 205 88.62 = 0 0
V7 89.95 Ay 0 0 96.55 T 0 0 96.03 Ay 0 0
Vg 96.22 E 0 0 96.55 Tu 0 0 96.08 E 0 0
Vg 96.22 E 0 0 96.55 Tu 0 0 96.08 E 0 0
vie 31284 F 0 0 364.69 T, 0 0 363.95 E 0 0
Vi1 312.84 = 0 0 364.69 Ty 0 0 363.95 = 0 0
V12 326.22 & 0 0 364.69 Ty 0 0 363.96 Ay 0 0
V13 326.22 & 0 0 382.27 Ay —0.45 438 382.27 Ay 0.45 438
via 33681 Ay, 0 0 38991 0 0 389.74 E 0 0
V15 348.67 Ay, —0.5465 538 389.91 E 0 0 389.74 B 0 0
V16 399.91 Ay 0 0 462.52 Tu 0 0 462.34 Ay 0 0
V17 402.33 E 0 0 462.52 T 0 0 462.36 & 0 0
V1g 402.33 E 0 0 462.52 Tu 0 0 462.36 & 0 0
V19 456.01 E 0 0 518.23 Tu 0 0 517.13 Au 0 0
V20 456.01 E 0 0 518.23 Bu 0 0 517.24 E 0 0
V21 456.07 Ag 0.24 178 518.23 X 0 0 517.24 E 0 0
V22 471.76 = 0 0 522.63 T —0.222 200 521.86 A —0.281 319
Vo3 471.76 & 0 0 522.63 Tu 0.062 16 521.86 £ 0 0
Vo4 511.54 Au 0 0 522.63 Tu 0.163 108 521.86 = 0 0
Vs 543.27 Ay 0 0 678.06 T 0 0 677.69 Au 0 0
V26 622.14 E 0 0 678.06 Tu 0 0 677.76 E 0 0
Vo7 622.14 E 0 0 678.06 Tu 0 0 677.76 & 0 0
Vog 2045.3 & 0 0 1954.81 Tu 0 0 1954.77 Ay 0 0
V29 2045.3 & 0 0 1954.81 Tu 0 0 1954.77 E 0 0
V30 2066.03 E 0 0 1954.81 Tu 0 0 1954.71 E 0 0
V31 2066.03 E 0 0 1974.09 g 0 0 1974.04 = 0 0
V32 2068.98 Ay 0 0 1974.09 g 0 0 1974.04 g 0 0
Va3 2169.92 Ag 0.1075 807 2084.04 F) 0.133 1142 2084.04 A —0.133 1142

respective state.

Ay =21;=1834 cm?

aK calculated assuming given state is the initial state in units of*&ru® Reorganization energies calculated in coordinate system of the

Ay =21 =2257 cm!

A =21 =2266 cm?

vector K, gives displacements in initial state normal coordinates. the normal definition of reorganization energy presumes the

Since the two sets of nhormal coordinates are not the s&me,

absence of the Duschinsky effect, and the value depends on

depends on which state is assumed to be the initial state. Wethe reference coordinates. The absolute values are not as large
calculateK for both states being the initial state, and the results as in our next example since the geometry change is small.

are given in Table 2. The resulting vibrational reorganization

One property of the Duschinsky matrix is that modes of

energies? an important factor in ET, are also given in Table different symmetries cannot mix. An additional fact is that only

2. The different displacement vectors lead to reorganization totally symmetric modes may have displacements. This means
energies that depend on the set of normal coordinates. The totathat only four modes should have nonzero valugs,iand these
vibrational reorganization energy is 1834 chin the normal same modes should form a4 4 block of J, since there are
coordinates of the radical and 2257 cmin the normal four totally symmetric modes when treatedD3y symmetry.
coordinates of the anion. As we discuss in a related manuscript, The four Ay modes of the neutral species should mix with the
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TABLE 3: Duschinsky Matrix for the V(CO) ¢/V(CO)e~ System (assuming neutral species is initial state)

(a) AygBlock
Q4 Ql3 Q22 Q33
' —0.9987 0.0475 0.0044 0.0204
15 —0.0471 —0.9975 0.0521 0.0064
Q2 —0.0057 —0.0515 —0.9972 0.054
Q'3 —0.021 —0.0082 —0.0535 —0.9983
(b) Ey Block
Q4 Q5 QlO Qll Q14 QlS Q23 Q24 Q31 Q32
Q4 —0.0004  —0.9969 0 —0.0061  —0.0002 0.0687 0 —0.0131 0.0052 0
Q's —0.9969 0.0004 —0.0061 0 0.0687 0.0001 —0.0131 0 0 —0.0052
Q1o 0 —0.0675  —0.0002 0.3963 0.0021 -—0.9035  —0.0001 0.1345 0.0482 0
Qu 0.0675 0 —0.3963  —0.0002 0.9036 0.0021 -0.1345 —0.0001 0 0.0482
Q1 0.0225 0 0.9132 0.0004 0.4043 0.0009 0.0275 0 0 —0.0354
Q13 0 0.0225  —0.0004 0.9132 —0.0009 0.4043 0 0.0275 0.0353 0
Q2 —0.0045 0 —0.0812  —0.0001 0.1137 0.0003 0.9897 0.0009 0 —0.0322
Q23 0 —0.0045 0.0001 —0.0812  —0.0003 0.1137 —0.001 0.9897 0.0322 0
Qs 0 0.0081 0 —0.0488  —0.0001 0.0249 0 —0.0393 0.9976 0
Q2 0.0081 0 —0.0488 0 0.0249 0.0001 —0.0393 0 0 —0.9976

aValues less than 10 ignored.Q represent anion modes, a@ represent neutral modes.

two A;g modes of the anion along with two of theglmodes
(T2g — Aig and E). However, this is not the case. ThedA
modes of the neutral species mix with eight modes of the anion,
the two Aig modes, and all six of thez§ modes. Similar results

due to the arbitrariness in choice and order of degenerate normal
modes. Each set of two degenerate modes must be considered
together and mixing among the set ignored. ThebBck of

the Duschinsky matrix, shown in Table 3, reveals that the third

are seen for the other sets of triply degenerate anion modes.and fourth 5 modes {10 andv;1 of both species) are well mixed

Also, if the anion is treated as the initial stat€, shows
displacements in eight modes, the twgyAnd six T,y modes,
as shown in Table 2.

This problem results from an implicit arbitrariness in choosing

with the fifth and sixth § modes {1, andv13 of the neutral
species and4 andvs of the anion). As an example, we will
discuss the degenerate pair of radical normal modesapd
Q'11, which has significant contributions from two sets of

degenerate normal modes. The convention that Gaussian followslegenerate anion normal modes. THey/Q'1; pair has contri-

results in three degenerate modes, describeg@anddes, that
do not correspond to oneifand two E modes inDsg
symmetry. This can be seen by the fact eagfriiode of the
anion mixes with both Fand Ag modes of the radical instead
of only one symmetry type and how albgfmodes show a

butions of 0.3963 and 0.0002 from thed®1, pair and 0.9036
and 0.0021 from the Qs pair. It must be emphasized that
the entire 2x 2 block must be considered when determining
the amount of mixing and not the individual elements when
doubly degenerate modes are considered.

displacement instead of only one of each degenerate set. Our The equations fod andK are based on eq 6, whexe are

way of getting around this problem was to slightly distort the
anion intoD3y symmetry. By changing andy coordinates by
1075 angstroms in the correct direction, the total energy and
vibrational frequencies were very slightly shifted, but the normal
modes were treated as D3y symmetry. The new standard

equilibrium coordinate vectors anpdare displacement vectors.
The nonlinearity results from the displacement dependence of
B in this equation, which is ignored to get a linear transforma-
tion. One way to test the validity of the linear approximation is
to test eq 6 with displacements along various normal modes

orientation resulted in structures that had the maximum numberwhile ignoring the coordinate dependenceB)fwhich is the

of symmetry elements in common, makim®j unnecessary.
Also, J properly separated into symmetry blocks, dtdave
only four displaced modes, as shown in Table 2. The resulting
vibrational reorganization energy changes slightly from the
octahedral case, from 2257 to 2266 ¢dimThe determinant of
Jis 0.997, very close to unity, with the discrepancy occurring
in the E block, which is the symmetry for rotations arourd
andy. The 1x 1 Ay block is within 10° of negative one,
orthogonal within our numerical accuracy (ignoring the arbitrary
sign), even though 4y is the symmetry of the third rotation
aroundz. This means that the fymode of anionic and neutral

unit matrix in this case. Equation 6 should fail for displacements
in the A,y and | modes, since these have the same symmetry
as a rotation, but should remain valid for the other modes.
Rearranging eq 6 to equal zero, the root-mean-squared of the
difference of each Cartesian coordinate from zero is used as a
measure of validity. Some results are given in Figure 1, where
normal mode displacements of 1 to 2 are typically large values.
As expected, eq 6 fails for displacements in thead Ay
modes, but the disagreements are small, with rms disagreements
of less than 103 A for reasonable normal mode displacements,
suggesting that the linear approximation is a good one. This is

species are nearly identical, as revealed by inspection of theconsistent with the closeness of the determinant of the Duschin-
normal mode output, and negligible axis-switching effects sky matrix to unity. However, for correct FCF, one must have
should occur for this mode. Theyfblock of J, shown in Table a determinant equal to unity, so problems may still arise if the
3, reveals that very little mixing occurs in the totally symmetric Ey modes are taken into account without some sort of renor-
modes. This also is true for most other symmetries that are notmalization of the F block.

shown. This is not surprising since the geometry change in this  Co(CO),. The other example is Co(CQ)°, which forms a
case is not large, suggesting the electron density and thereforesimilar ion pair, Co(Cp)"|Co(CO),~, that undergoes similar ET
the force constants do not change much. However, gH#dek reactivity!® Again, B3LYP calculations were performed with
does show a moderate amount of mixing. Care must be takenthe 6-311G basis set for cobalt and 6-311G(d,p) basis sets for
since mixing of degenerate modes is not physically meaningful carbon and oxygen. In this case, the calculations result in a
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0.003 TABLE 5: Calculated Vibrational Frequencies, Symmetries,
< and Displacements for the Co(COyCo(CO),~ System
= Co(COY Co(CO)~
% 0002 | viem?d K2 A(embP v(cmY Ka 4 (cmbp
“Li V1 59.75 —0.0055 0 72.37 E —0.0036 0
50 v 59.87 —0.0148 0 7237 E 0.0036 0
2 V3 80.74 —0.0544 0 85.65 T —1.6548 298
3) Va 80.9 —0.0455 0 85.65 T —1.5274 254
s 00011 vs 8505 27752 826 85.65 ,T —1.8185 360
o~ Ve 267.94 0.0006 0 315.59 ;T —0.001 0
No) 7 268.1 0.004 0 31559 4T O 0
o Vg 287.31 0.0009 0 315.59 ;T 0.001 0
=000 4 v ; . . ve 39465 0.6389 943  477.58 ;A—0.325 357
0 ) 4 6 8 10 vi0  394.92 —0.3739 323 538.3 E 0.0002 0
v11 396.38 —0.0354 3 538.3 E —0.0001 0
Normal Mode Displacements (amul/2A) vip 431.85 —0.3364 313 54466 J 0.2149 203
vz 469.78 —0.0029 0 54466 7 0.2161 205
Figure 1. Root-mean-square (rms) disagreement of each Cartesianv,, 469.86 —0.0155 1 544.66 I 0.1842 149
coordinate in eq 6 for displacements along sevegar Ay normal vis 477.27 —0.7805 2058 574.75 ;T —0.483 1143
modes for the V(CQ)system. The coordinate dependence of B is v 4825 —0.0511 9 57475 7 —0.1594 124
ignored. v17  483.15 0.0079 0 574.75 ,T —0.2756 372
11g 2095.16 0.0001 0 1967.67 > T 0.0269 42
TABLE 4: Standard Orientation Atomic Coordinates (in v1e 2095.22  0.0001 0 1967.67 ,T 0.0266 41
angstroms) for Co(CO), and Co(CO),~ vao 2106.64 —0.028 52  1967.67 I 0.0264 40
Co(CO), Co(CO) vp1 2179.74 —0.0751 397 2070.03 A 0.2021 2595
Ay =2 = 4925 cntl Av=21=6183cnt?
X y z X y z
Co  0.000004—0.000318 —0.212456 0O 0 0 aK calculated assuming given state is the initial state in units of
C —0.000015-0.000402 1.628417 1.01298 1.01298 1.01298 amu? A.b Reorganization energies calculated in coordinate system of
C 1555843 -0.897775-0.516878 ~1.01298 —101298 101298 [N€ respective state.
G 1859765-0897933 0516847 101208 101208 —101208  TABLE 6 Calculated T for the Co(CO)/Co(CO)~ System
O —0.000042-0.000817 2766589 1683685 1.683685 1683685 (assuming neutral species is initial state)
O —2.530524 —1.459219 —0.703171 —1.683685 —1.683685  1.683685 X y z
O 0.000157 2.920787-0.701967 —1.683685 1.683685-1.683685
0.70708 —0.40846 0.57723
O  2.530393-1.459475-0.70312  1.683685-1.683685 —1.683685 0.00003 0.81632 05776
—0.70713 —0.40839 0.57722

tetrahedral geometry for the anion. For the neutral species, a
C, geometry results. The atomic coordinates are given in Table are near 0.5, signifying a significant contribution from other
4, and the frequencies and symmetries of the vibrations are givenmodes. The large Duschinsky effect suggests that ion pairs

in Table 5. Although this neutral geometry is very clos€tg, involving Co(CO) are examples of systems where including
all attempts to find an optimized structure with higher ti&n the Duschinsky effect in calculated electron-transfer rates may
symmetry failed. The €Co—C angles are about 99.é&nd be important. In another manuscfipve have developed a
117.3, compared to thelTy value of 109.8. The low C; general model for the Duschinsky effect in electron transfer that

symmetry is unfortunate since the lack of symmetry in the shows large rate enhancement for inverted region electron
neutral species does not allow the breaking of the Duschinsky transfer.
matrix into symmetry blocks, greatly complicating the analysis.  The determinant ol is 0.983, close to unity, but not as close
However, this allows study of a case where zero-order axis- as the previous example. This suggests that the vibrational
switching is necessary and nonlinear effects occur for all modes, normal modes of the anion are not as well represented by
including displaced modes. combinations of vibrational normal modes of the other state
The result for calculation 6f © from eq 12 is shown in Table  without including rotations, leading to larger axis-switching
6. TO was converted td° and eqs 7 and 8 were used to effects. In fact, since the neutral species has no symmetry, axis-
calculateJ and K. The result forK is given in Table 5 along switching effects need to be taken into account for every mode.
with the corresponding vibrational reorganization energies, B°, the zero-order axis-switching matrix, is correct only at the
which total to 4925 cm! in the normal coordinates of the radical  equilibrium geometry of either state, but any displacements from
and 6183 cm! in the normal coordinates of the anion. These equilibrium will cause eq 6 to fail. Some results, including the
values are much larger than for V(G&nd their dependence  smallest and largest failures, are given in Figure 2. Larger
on coordinate is much greater due to the larger Duschinsky disagreements are seen for certain modes of Co{@@j for
mixing. Two portions of the Duschinsky matrix representing either the Ag or E; modes of V(COy, as would be expected
modes 1 to 8 and 10 to 21 are given in Table 7. The analysis based on the determinant df Errors in calculated FCF are
is much more difficult becaus@ does not form symmetry  expected not only due to the value of the determinant but also
blocks; however, it is obvious from inspectionbfhat there is due to the nonlinear effects that are ignored in the zero-order
much more normal mode mixing in this case than in the axis-switching approximation. The vibrational wave functions
vanadium case. This is expected since there is a much largethave width, so for correct FCF the coordinate dependen&e of
geometry change for Co(C@)han V(CO}. For exampleyis must be known and the nonlinear effects would have to be
andvy4 of the neutral species include significant contributions included in the FCF, which is not currently possible. However,
from modes 10 to 17 of the anion. Alse;s of the neutral the coordinate dependenceB$hould not be large in the region
species contains contributions from several anion modes, important for FCF calculations, which is between the equilibrium
including the high frequency,;. Many of the diagonal elements  geometry of the two states, and the failure of eq 6 is small for
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TABLE 7: Portions of the Duschinsky Matrix for the Co(CO) 4/Co(CO),~ System (assuming neutral species is initial state)
(@) Modes 1to 8

Q Q2 Qs Qs Qs Qs Q7 Qs

Q1 —0.8718 0.2352 —0.0029 —0.3173 0.2684 —0.0169 —0.0082 0.0092

o 0.2319 0.8724 0.3391 —0.1522 —0.1877 —0.0003 0.0139 0.0134
Q'3 —0.3548 —0.2201 0.5297 0.223 —0.6994 0 0.0013 0.0004
Q4 0.216 —0.3488 0.5013 —0.7443 0.1424 —0.0008 —0.0001 0.0005

5 —0.0026 —0.0062 0.5779 0.5053 0.6007 —0.0008 0.0004 0.0009
Qs 0.0047 0.0019 0.0025 0.0021 —0.0035 —0.5742 —0.7422 —0.2076
Q' —0.004 0.0046 0.0035 —0.003 0.001 0.5414 —0.2045 —0.7669
Q's 0.0003 0.0003 0.0008 0.0002 —0.0006 0.5707 —0.5975 0.5632

(b) Modes 10 to 21

QlO Qll QlZ Q13 Q14 QlS Q16 Q17 QlS Ql9 QZO QZl

Q'10 0.7027 —-0.1212 0.2332 —0.3425 —-0.1425 -0.1267 -0.161 0.0466 —0.0191 —0.0493 0.0651 0.0213
Qun —0.166 —0.8045 0.0861 0.2358 —0.4089 0.094 -0.1121 -0.1229 -0.075 0.0575 0.0182 0.0027
Q1 0.0048 —0.0013 0.3489 0.3512 0.3008 0.6006 0.2005 0.3421 0.0162 0.0159 0.0163 0.008
Q'1s 0.1853 0.3655 —0.0129 0.5642 —0.641 —0.1577 0.0954 0.217 —-0.0138 0.0146 —0.001  —0.0005
Q1 —0.3643 0.1887 0.6916 —0.3708 —0.3384 —0.0231 0.2504 —0.1285 —0.0094 -—-0.0081 0.015 —0.0031
Qs —0.015 0.0004 0.4459 0.4562 0.39270.5318 —0.2358 —0.2699 —0.037 —0.0363 —0.0374 —0.1304
Q' 0.2544 —-0.1474 -0.1043 0.0999 0.0987 —0.1085 0.8399 —0.3916 —0.0048 —0.004 0.0016 —0.0085
Q17 —0.1478 —0.2547 0.0049 —0.1205 0.1203 —0.5035 0.2788 0.7355 —0.0025 0.0036 0 0.0013
Q1 —0.0275 —-0.1057 0.0093 0.032 —0.0482 0.0065 —0.0066 —0.0082 0.7541 —-0.6147 —0.1395 -0.0003
Q' 0.1064 —0.028 0.0455 —0.0336 —0.0134 -0.0011 -—0.0097 0.0072 0.2731 0.5147-0.7915 0.0002
Q'20 0.0003 —0.0006 —0.0196 —0.0195 -—0.0169 0.0493 0.0163 0.028 —0.5761 —0.5764 —0.5735 0.0278
Q2 —0.0003 0.0002 0.0689 0.0689 0.0588-0.065 —0.0216 —0.037 0.0097 0.0093 0.0097 0.9876

aValues less than 10 ignored.Q represent anion modes, a@ represent neutral modes.

. 0.009 molecule specific, so further application to real systems requires
< 0008 1 the methods of this paper.

2 0,007 - For electron-transfer rate calculations, a basic sum over states
g ) Fermi’s golden rule implementation can be used. This results
8 0.006 | in eq 133435

=

&b 0.005 1 o

= 0.004 1 kET — ZH sb(4ﬂ/15kBT)_l/2 %

2 0.003 A

E 0.002 1 (B te—atA)

© ZP(ei)Z%xfﬁ ex (13)

o 0.001 1 [ AkgT

0,000

In eq 13, i is the initial (excited) state, f is the final (ground)
state,Hqp is the electronic coupling of the two statds,is the
Normal Mode Displacements (amul/2A) solvent reorganization enerdfio is the free energy difference,
Figure 2. Root-mean-square disagreement (rms) of each Cartesian IS the vibrational wave functiorR(e;) is the distribution of
coordinate in eq 6 for displacements along several normal modes for initial vibrational states. Equations 14 and 15 can be used for
the Co(CO) system. The coordinate dependence of B is ignored.  absorption and emission spectra respectively, with the identities

. . ) of the initial and final states reversed for absorption versus
reasonable displacements. In addition, the greatest failure of eqgmission spectr®

6 occurs for modes with displacements near zero, which have
the smallest importance for FCF calculations. In light of this, A(w) O

0 2 4 6 8 10

the zero-order approximation does appear to be a good ap- '—(w —Epo— €+ € — /13)2'
proximation and is the best currently available. wzp(e)z% leﬁ exp 0~ € i (14)
I I
A KT
Application to Electron-Transfer Rate Calculations ' S !
The goal of this paper has been to demonstrate how E(w) O )
complications arise in applying the Duschinsky effect to specific —(w —Egpt+ €& — €+ ,15)2'
molecules. All phenomena involving radiative or nonradiative af’ZP(ei)Z% |Xfﬁ exp (15)
transitions can be impacted by the Duschinsky effect, and it T 4AksT ]

has been generally ignored in electron-transfer models. There
have been many studies including the Duschinsky effect in
absorptioA® 27 and resonance Ran®n®® spectral simulation.
However, very few studies of rate proces$éss2 have
included the Duschinsky effect, and none are systematic. In a
related papet,we have performed the first systematic study
that demonstrates the major importance of the Duschinksy effect We have presented an analysis of complexities that can occur
to ET rates in the inverted region. Those results were not when applying the Duschinsky effect to real molecules. There

Equations 13-15 can be used in conjunction with any of the
previously published metho#i% 10 for calculating multidimen-
sional FCF.

Conclusion
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are subtle nonlinear transformation issues that can arise for  (7) Chen, P.IrlUnimolecular and Bimolecular lonMolecule Reaction
transitions between two states, and these are discussed in gener%?ci'g's‘ir’\‘glbg;l_\(‘;pngﬁzTg Powis, I, Eds.; John Wiley and Sons Ltd.:
terms and for specific mqlecular examples. These nonllinear (8) Faulkner, T. R.; Richardson, F. &.Chem. Phys1979 70, 1201
effects cannot be taken into account in FCF calculations; 1213. _
however, we have shown these to be small enough to be {g) Euﬁk?f’ E-?Tc_fg)bt' P. "'\'AJ-ACTeJm- Phyf198gh85rﬁ%360}7%33185é_
neglected through use of the zero-order axis-switching ap- 395 ) Ruhoff, P. T.; Ratner, M. Ant. J. Quantum Chen2000 77,
proximation. In addition, we identified a problem that arises  (11) Eckart, CPhys. Re. 1935 41, 552-558.
from nonorthogonality of the Duschinsky matrix, and a correc- ~ (12) Hougen, J. T.; Watson, J. K. Gan. J. Phys1965 43, 298-320.
tion method must still be tested before exact results can be (13) Ruhoff, R. T.Chem. Phys1994 186 355-374. _
. . . (14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
obtained from FCF calculations. The Duschinsky effect has beeny a :‘cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
calculated for two molecules involved in electron-transfer R.E.;Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
reactions of ion pairs. The anion part of the pairs, V N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
d Co(COxN F(;th : i P tral p_ h (6%) R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
_an o( ’ ), an e'r_ respective neu _ra speue_s, ave DEEN petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
included in the calculations. The vanadium species undergoesrabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.

a geometry change from an octahedral anion @z@aneutral V., BabOU,LIA-GG-; Steifar;)vMB.tB-;é-itll_, (|3: LigsgenPIéO_,thA._i_ P’iAslkfrﬁ, P,
H H H omaromi, I.; Gomperts, R.; Martin, K. L.; FOX, D. J.; Kelth, |.; Al-Laham,
species. However, the accompanying geometrical changes aré\jl. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,

small and result in small Duschinsky effects. The calculation p, m. w.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez,
illustrated how to perform the computations to allow correct C., H%a_déGordqn, Ml.; Rfep;qt?li, E. E.;Piopllggé A. Gaussian 98W, Revision
dgs_crlptlon of degenerate normal modes a_n_d how to descnbeA-il‘;)-vBoiE;S;"‘v_r.”&:; Kolcﬁi,ljr.gK]’. Am. Chem. S04989 111, 4669
mixing among degenerate modes. In addition, a method of 4553
testing the linear approximation was developed that shows its  (16) Spears, K. G.; Wen, X.; Zhang, R. Phys. Chem1996 100,
validity for this molecule. On the other hand, the cobalt species 10206-10209.

- . : (17) Spears, K. G.; Shang, B.. Phys. Chem. 200Q 104, 2668-2680.
undergoes a much greater geometrical distortion from the (18) Myers, A. B. InLaser Techniques in Chemisiryyers, A. B..

tetrahedral anion into a nearl€s, neutral species ofC, Rizzo, T. R., Eds.; John Wiley & Sons: New York, 1995; pp 3384.
symmetry. This results in a much larger Duschinsky effect, and  (19) Spears, K. G.; Wen, X.; Arrivo, S. Ml. Phys. Chem1994 98,
; ; ; 9693-9696.
the lack of.symmetry in thg neutral species grgatly complicates (20) Mebel, A. M: Chen, Y. T.: Lin, S. HChem. Phys. Lett1996
the analysis of the Duschinsky matrix since it does not break ;55 5362
into symmetry blocks. The cobalt molecule is a case where zero-  (21) Mebel, A. M.; Chen, Y. T.; Lin, S. HJ. Chem. Phys1996 105,
order axis-switching is necessary, and nonlinear effects occur90027£9(ﬁ05 LA M. Lin.S. H- Chan. C. HL Chem. Phvel997 10
for all modes, including displaced modes. The absolute reor- 265})262%.6’ - Mo b, 5. 1. hang, & - Ghem. Fhy 106
ganization energy and coordinate dependence of the reorganiza- (23) Mebel, A. M.; Chen, Y. T.; Lin, S. HChem. Phys. Lett1997,
tion energy were much larger for this molecule. We briefly 275 19-27. . . A . .
outlined methods of applying such computations to electron- , (24) Liao, D. W.; Mebel, A. M.; Hayashi, M.; Shiu, Y. J.; Chen, Y. T.;
: Lin, S. H.J. Chem. Phys1999 111, 205-215.
transfer rates that can be generalized to many rate processes. (25) Hemley, R. J.; Lasaga, A. C.; Vaida, V.; Karplus, 8.Chem.
Phys.1988 92, 945-954.
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