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We present an analysis of the Duschinsky effect and its application to real molecules. We discuss the many
subtle aspects of applying the theory to calculations and give examples of a nonlinear normal coordinate
transformation. We show how to judge if nonlinear effects are small enough to be neglected through use of
the zero-order axis-switching approximation, which allows calculation of Franck-Condon factors (FCF).
However, even with the zero-order axis-switching approximation, nonorthogonality can occur in the Duschinsky
matrix, and this must be corrected to allow proper FCF calculations. We have calculated the Duschinsky
effect for two systems that form the anion in an electron-transfer ion pair, V(CO)6

- and Co(CO)4-. The
formation of theD3d neutral vanadium species is accompanied by a small geometric distortion and small
Duschinsky effect, despite the change in point group from Oh. We discuss how to perform the calculations
to properly represent degenerate vibrations and how to test if the linear approximation is adequate. The
tetrahedral cobalt anion undergoes a much larger geometrical distortion, which results in a larger Duschinsky
effect, upon formation of the nearlyC3V neutral species. The analysis of the cobalt system, with aC1 symmetry
for the neutral, demonstrates the methods required when there is no simplification from symmetry. These
two examples show the validity of the zero-order axis-switching approximation. The cobalt complex has
much larger reorganization energy and a much greater dependence of reorganization energy on the choice of
reference state, as expected when the Duschinsky effect is larger. We briefly outline the method of applying
these computations to electron-transfer rate calculations.

Introduction

When a molecule undergoes an electronic transition, the
change in electronic state is usually accompanied by a change
in the normal modes of vibration. This phenomenon was first
considered in 1937 by Duschinsky,1 and is therefore given the
name the Duschinsky effect. The result is that normal modes
of one state are no longer orthogonal to the normal modes of
the other state. A result is that the overlap integrals of the
vibrational wave functions, or Franck-Condon factors (FCF),
are no longer separable into products of one-dimensional FCF
calculations, and one must use multidimensional FCF. We have
recently shown that the additional complexity of multidimen-
sional FCF can lead to large effects on electron-transfer rates.2

Therefore, a treatment of the Duschinsky effect is required that
demonstrates how to compute the Duschinsky effect for complex
molecules. Furthermore, there are many subtle points in using
and interpreting the theory that are illustrated through specific
calculations on complex molecules involved in electron transfer
within ion pairs.

For complex molecules, it is difficult to generalize the
relationship between the two sets of normal modes involved in
a transition. Duschinsky proposed that the two sets of normal
modes were related by a linear transformation. This is analogous
to a simple multidimensional rotation and translation and leads
to the following,1,3-5

wherex is the vector of Cartesian coordinates,m1/2 is a diagonal
matrix with each atom’s mass appearing three times,x0 is the
vector of equilibrium coordinates,F is the Cartesian displace-
ment coordinate vector,ê is the mass weighted Cartesian
displacements coordinates,L is the normal coordinate matrix,
Q are normal coordinates,K is the normal coordinate displace-
ment vector, andJ is the Duschinsky matrix. Also, primed terms
refer to the initial state and unprimed terms refer to the final
state. The matrixL transforms the mass-weighted Cartesian
displacement coordinates,ê, into normal coordinates,Q. K gives
the displacements between the equilibrium structures of the two
states in terms of initial state normal coordinates. The two states
must be oriented so that they have the largest number of
symmetry elements in common with the center of mass at the
origin; however, this condition is not sufficient to prevent
potential nonlinear effects from axis-switching that must occur
between the two states.

Axis-Switching Effects

Nonlinear Effects. Many authors have developed methods
to calculate multidimensional FCF.3,6-10 All of this work has
assumed a linear transformation between sets of normal
coordinates, as was suggested by Duschinsky. However, Duschin-
sky’s analysis ignored complications arising from the separation
of vibrations, translations, and rotations. These complications
were resolved for a single state by Eckart11 at around the same* E-mail: spears@chem.nwu.edu. Fax: (847) 491-7713.

Q′ ) JQ + K (1)

J ) L′TL (2)

K ) L′Tm1/2(x0 - x0′) (3)
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time as Duschinsky’s work. Later, Hougen and Watson12 showed
that in order to satisfy the Eckart conditions for both states,
axis-switching effects need to be taken into account. This results
in eq 6, which ensures that the rotational and translational
coordinates of both states are equal to zero. Basically, this means
that the coordinate system must rotate upon a change in
electronic state in order to satisfy these conditions. These axis-
switching effects can lead to experimentally observable phe-
nomena. Experimental observation of nominally forbidden
rotational lines in the gas-phase spectrum of acetylene has been
explained by including axis-switching effects.12 The axis-
switching also makes the transformation nonlinear since the axis-
switching matrix depends on the instantaneous coordinates,
which are continuously changing as the molecule vibrates. With
axis-switching taken into account, eqs 2 and 3 become eqs 7
and 8.5

Here,B is a 3N× 3N block diagonal matrix with the 3× 3
Hougen and Watson axis-switching matrix,T, appearing along
the diagonal.T is given by eq 9 and the sum is over each
atom.5,12 The axis-switching matrix,T, depends on the instan-
taneous coordinates and gives rise to the nonlinearity. Fortu-
nately, the axis-switching effects, and the resulting complica-
tions, occur only for certain vibrational modes, namely modes
that are of the same symmetry as a rotation.4

The following discussion assumes that the point group is
based on only the symmetry elements that are common to both
states, with a relative axis orientation having the maximum
number of symmetry elements in common. The symmetry may
be lower than that of either state by itself. For example, the
ground state of ethylene is planarD2h, and the excited state is
thought to have one CH2 group rotated by 90° with D2d

symmetry. To achieve the proper relative axis orientation, one
state must be rotated by 45°, resulting in a common D2 point
group.

Axis-switching effects occur only for displacements along
modes of the same symmetry as a rotation. Axis-switching
effects occur because the motions caused by displacements along
vibrational normal modes of one state cannot be described by
displacements along a linear combination of only vibrational
normal modes of the other state. To properly describe these
motions we must include rotational coordinates.4,5 Molecules
of high enough symmetry (common point group of two states
notC1, Cs, Ci, Cn, Cnh, or Sn) exhibit these effects only for certain
nontotally symmetric modes. For axis-switching effects to occur
for displaced totally symmetric modes, the common point group
of the molecule must have rotations that belong to the totally
symmetric representation. From inspection of point group tables,
this is true only for low symmetry (C1, Cs, Ci, Cn, Cnh, andSn)
point groups. Since there can be no displacements along
nontotally symmetric modes between the equilibrium structures
of the two states, the overall axis-switching effects are expected
to be smaller in the higher symmetry cases.

Zero-Order Axis-Switching Approximation. The transfor-
mation between sets of normal coordinates can be made linear.
This is accomplished with the zero-order axis-switching ap-
proximation. This approximation is accomplished by replacing
eq 9 with eq 10.12

Equation 10 is the result of ignoring the displacements in eq 9.
This results in an approximate linear transformation and allows
the use of standard equations for Franck-Condon factors. One
problem is that there are eight possible solutions to eq 9.7 Of
the eight, four can be ruled out becauseT0 is a rotation matrix,
so the determinant must be equal to+1. Of the four remaining
solutions, the proper choice is obvious from the relative
orientation of the two states after rotation. Solving eq 10 for
the proper solution can be difficult. Fortunately, a closed form
solution has been derived which easily gives all eight solutions.7

The first step is to form the following 3× 3 matrix.

In eq 11,R andâ denotex, y, andz. For planar molecules,Czz

is set equal to unity. Diagonalization of the productCTC results
in a matrix, R, with eigenvectors as columns, and the corre-
sponding diagonal matrix of eigenvalues,λ. An additional matrix
Λ, which has+1 or -1 along the diagonal, is needed. The
equation forT0 is

with the eight solutions arising from the eight possibilities for
Λ. Again, four solutions are ruled out because the determinant
of T0 must be+1. Of the remaining four, the correct choice is
made by converting toB0 and applying the rotation tox0′ and
comparing the orientation tox0, or equivalently rotatingx0 by
(B0)-1 and comparing tox0′. The choice that results in structures
with corresponding atoms in closest proximity is correct. In
addition, Ozkan describes a method that works if only a
2-dimensional rotation is needed for the axis rotation.4

For the high symmetry point groups (notC1, Cs, Ci, Cn, Cnh,
or Sn), zero-order axis-switching is not required if the two states
of the molecule are oriented in such a way that they have the
highest number of common symmetry elements.4 However, if
the states are not aligned in such a manner, zero-order axis-
switching is necessary to align the states in the proper manner.
In the low symmetry point groups (C1, Cs, Ci, Cn, Cnh, andSn),
the zero-order axis-switching always must be included to
properly orient the equilibrium structures of the two states
relative to each other. In this case, a maximum coincidence of
common symmetry elements still does not ensure that the Eckart
conditions are satisfied at equilibrium in both coordinate
systems. The application of a zero-order axis-switching method
still leaves nonlinear effects in some vibrations, and we discuss
this in the following paragraph.

Since molecules are always vibrating and the instantaneous
coordinates changing, even in the ground vibrational state, the
zero-order approximation should lead to errors in FCF. Gener-
ally, in electron transfer rate calculations and absorption and
emission spectrum calculations, totally symmetric modes are
of much more importance than nontotally symmetric modes.
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This is due to the lack of displacements along nontotally
symmetric modes. For the high symmetry cases, no axis-
switching effects occur along the totally symmetric modes, so
the ignored nonlinearities occur only along nondisplaced,
nontotally symmetric modes. Since the important region for FCF
along nondisplaced modes is small, consisting only of the width
of the wave function, small nonlinear axis-switching effects will
occur and their neglect should be an acceptable approximation.
In the low symmetry cases, axis-switching and the accompany-
ing nonlinearities do occur for displaced totally symmetric
modes. Since there are displacements along these modes, the
important region for FCF calculation is much larger, suggesting
larger errors involved in ignoring the nonlinear aspect of the
transformation.

However, even in the low symmetry case, the zero-order axis-
switching approximation has been suggested to be a fairly good
approximation as long as displacements are small.4,12 This
suggests that using a linear transformation, which is necessary
to use published methods for FCF calculations, might be a good
approximation for either totally symmetric or nontotally sym-
metric modes. A convenient method of computing multidimen-
sional FCF has been developed that uses recursion relations.13

Nonorthogonality of the Duschinsky Matrix. There is an
additional problem when we consider modes with the same
symmetry as a rotation. Since the vibrations of one state cannot
be properly described as a linear combination of vibrations of
the other state, the Duschinsky matrix is not orthogonal and
has a determinant that is not equal to one.4 This results in a
violation of the sum rule for FCF. The squares of the FCF of a
vibrational level of one electronic state with all of the vibrational
levels of another electronic state should sum to unity, but do
not when the determinant ofJ is not unity. The sum rule
violation will obviously lead to errors in absolute rate calcula-
tions, with calculated rates being too large. Errors will also occur
in absorption and emission spectra, even if in arbitrary units,
because the relative errors are not the same for each FCF
calculated. However, this might be overcome in an approximate
way through a renormalization of the Duschinsky matrix,
although we have not tested this idea.

It must be noted that the preceding analysis was performed
using Cartesian coordinates. A similar analysis exists in the
literature using internal coordinates.4 However, this results in
more complex equations and requires the determination of the
internal coordinates as a function of Cartesian coordinates, which
is not a trivial matter with a unique correspondence.

Parameters from Ab Initio Calculations

We have used a specific quantum chemistry package,
Gaussian,14 although the general method should be similar for
any quantum chemistry package. First, a geometry optimization
and a vibrational normal mode calculation must be performed
for both states of interest. Since the normal modes are given in
the standard orientation, this same orientation must be used for
the atomic coordinates. Since the standard orientation is not in
center of mass coordinates, but instead is in center of nuclear
charge coordinates, the atomic coordinates must be translated
into center of mass coordinates unless the symmetry is high
enough that this is already the case. This has no effect on the
normal modes. In eq 2, the normal mode matrix,L, is given in
mass-weighted coordinates, while Gaussian outputs give normal
modes in coordinates that are not mass weighted. To convert
the normal modes to the correct type of coordinates, multiplica-
tion of the matrix m1/2 of eq 5 and the Gaussian normal
coordinate matrix must be performed. Then, each column of

this matrix must be renormalized to give an orthogonal normal
mode matrix whereLTL ) 1. This factor is called the reduced
mass in Gaussian.

It is essential to orient the two states with the maximum
number of common symmetry elements. A relative orientation
change may be necessary because each state can be in a different
standard orientation. To ensure that the relative orientation is
correct, calculation ofT0 can be performed as a test. If the
resultingT0 is the unit matrix, the states are properly oriented
and eqs 2 and 3 can be used to calculateJ andK. If T0 is not
the unit matrix, then conversion toB0 is needed and eqs 7 and
8 must be used to findJ andK. Complications may arise from
degenerate modes when the degeneracy in a high symmetry state
is broken in a lower symmetry state. An example of this will
be discussed in the next section. We emphasize thatB0 must
always be calculated for low symmetry (C1, Cs, Ci, Cn, Cnh,
andSn) point groups.

Example Calculations for Electron Transfer

Two examples involving a state change from an anion to a
radical were selected for study because these represent the anion
half of an electron-transfer ion pair system.15,16 The two states
are both lowest energy states, so that standard ab initio methods
can give excellent results. We expected the anion to undergo a
geometrical distortion and change in symmetry upon formation
of the neutral radical species, resulting in substantial Duschinsky
effects. The cation half of the ion pair complex has less
geometric reorganization so that we emphasize the anion
component in order to reduce the computational effort. In
addition, the calculations remain transferable since a variety of
cations can be used to form the ion pair.15

V(CO)6. The first example is V(CO)6
-1/0. This serves as the

anion in the ion pair Co(Cp)2
+|V(CO)6-, which undergoes

photoinduced electron transfer to form a radical pair which then
undergoes a spontaneous reverse electron-transfer back to the
ion pair. An interesting feature of this system is that experiments
have shown different electron-transfer rates as a function of
vibrational level in the V(CO)6 radical.16,17B3LYP calculations
were performed with the 6-311G basis set for vanadium and
6-311G(d,p) basis sets for carbon and oxygen. The calculations
result in an octahedral geometry for the anion andD3d geometry
for the neutral species. The resulting atomic coordinates are
given in Table 1. For the neutral species, the C-V-C angles
are 93.8° and 86.2°, compared to 90° in the Oh anion. In
addition, normal mode calculations were performed at the
optimized geometry of each state. The symmetries and frequen-
cies of the resulting vibrations are given in Table 2. In both
cases, the standard orientation was in center of mass coordinates
due to the symmetry of the molecule, so it was unnecessary to
translate the coordinates. From inspection of the coordinates of
the two species, it can be seen that the two states are oriented
differently and do not have the maximum number of symmetry
elements in common. This is due to the way Gaussian chooses
the standard orientation forOh andD3d symmetries. To correct
this, B0 was calculated from eq 12.

In the octahedral anion, the vibrational calculation results in
two A1g, four Eg, three T1g, six T2g, twelve T1u, and six T2u

vibrational normal modes. When treated inD3d symmetry, the
triply degenerate modes become A and E modes. For example,
T1u becomes Eu and A2u. The calculatedOh mode correlates to
four A1g, one A2g, ten Eg, two A1u, four A2u, and twelve Eu
modes inD3d symmetry, as is also calculated for theD3d neutral
species. The application of eqs 7 and 8 results in a Duschinsky
matrix, J, and a displacement vector,K. The displacement
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vector,K, gives displacements in initial state normal coordinates.
Since the two sets of normal coordinates are not the same,K
depends on which state is assumed to be the initial state. We
calculatedK for both states being the initial state, and the results
are given in Table 2. The resulting vibrational reorganization
energies,18 an important factor in ET, are also given in Table
2. The different displacement vectors lead to reorganization
energies that depend on the set of normal coordinates. The total
vibrational reorganization energy is 1834 cm-1 in the normal
coordinates of the radical and 2257 cm-1 in the normal
coordinates of the anion. As we discuss in a related manuscript,2

the normal definition of reorganization energy presumes the
absence of the Duschinsky effect, and the value depends on
the reference coordinates. The absolute values are not as large
as in our next example since the geometry change is small.

One property of the Duschinsky matrix is that modes of
different symmetries cannot mix. An additional fact is that only
totally symmetric modes may have displacements. This means
that only four modes should have nonzero values inK, and these
same modes should form a 4× 4 block of J, since there are
four totally symmetric modes when treated inD3d symmetry.
The four A1g modes of the neutral species should mix with the

TABLE 1: Standard Orientation Atomic Coordinates (in angstroms) for V(CO) 6, V(CO)6
- in Oh Symmetry, and V(CO)6- in

D3d Symmetry

D3d V(CO)6 Oh V(CO)6- D3d V(CO)6-

x y z x y z x y z

V 0 0 0 0 0 0 0 0 0
C 0 1.701632 1.086112 0 0 1.970822 0 1.609178 1.137843
C 0 -1.701632 -1.086112 0 0 -1.970822 0 -1.609178 -1.137843
C -1.473657 -0.850816 1.086112 0 1.970822 0 -1.393589 -0.804589 1.137843
C 1.473657 0.850816 -1.086112 0 -1.970822 0 1.393589 0.804589 -1.137843
C -1.473657 0.850816 -1.086112 1.970822 0 0 -1.393589 0.804589 -1.137843
C 1.473657 -0.850816 1.086112 -1.970822 0 0 1.393589 -0.804589 1.137843
O 0 2.669554 1.690295 0 0 3.128572 0 2.554477 1.80627
O 0 -2.669554 -1.690295 0 0 -3.128572 0 -2.554477 -1.80627
O -2.311902 -1.334777 1.690295 0 3.128572 0 -2.212242 -1.277238 1.80627
O 2.311902 1.334777 -1.690295 0 -3.128572 0 2.212242 1.277238 -1.80627
O 2.311902 -1.334777 1.690295 -3.128572 0 0 2.212242 -1.277238 1.80627
O -2.311902 1.334777 -1.690295 3.128572 0 0 -2.212242 1.277238 -1.80627

TABLE 2: Calculated Vibrational Frequencies, Symmetries, and Displacements for the V(CO)6/V(CO)6
- System

D3d V(CO)6 Oh V(CO)6- D3d V(CO)6-

ν (cm-1) Ka λi (cm-1)b ν (cm-1) Ka λi (cm-1)b ν (cm-1) Ka λi (cm-1)b

ν1 54.46 Eu 0 0 54.42 T2u 0 0 52.22 A1u 0 0
ν2 54.46 Eu 0 0 54.42 T2u 0 0 52.37 Eu 0 0
ν3 66.2 A1u 0 0 54.42 T2u 0 0 52.37 Eu 0 0
ν4 82.07 Eg 0 0 89.29 T2g -1.012 121 88.59 A1g 1.752 357
ν5 82.07 Eg 0 0 89.29 T2g 0.56 37 88.62 Eg 0 0
ν6 83.54 A1g 1.733 311 89.29 T2g 1.317 205 88.62 Eg 0 0
ν7 89.95 A2u 0 0 96.55 T1u 0 0 96.03 A2u 0 0
ν8 96.22 Eu 0 0 96.55 T1u 0 0 96.08 Eu 0 0
ν9 96.22 Eu 0 0 96.55 T1u 0 0 96.08 Eu 0 0
ν10 312.84 Eg 0 0 364.69 T1g 0 0 363.95 Eg 0 0
ν11 312.84 Eg 0 0 364.69 T1g 0 0 363.95 Eg 0 0
ν12 326.22 Eg 0 0 364.69 T1g 0 0 363.96 A2g 0 0
ν13 326.22 Eg 0 0 382.27 A1g -0.45 438 382.27 A1g 0.45 438
ν14 336.81 A2g 0 0 389.91 Eg 0 0 389.74 Eg 0 0
ν15 348.67 A1g -0.5465 538 389.91 Eg 0 0 389.74 Eg 0 0
ν16 399.91 A2u 0 0 462.52 T1u 0 0 462.34 A2u 0 0
ν17 402.33 Eu 0 0 462.52 T1u 0 0 462.36 Eu 0 0
ν18 402.33 Eu 0 0 462.52 T1u 0 0 462.36 Eu 0 0
ν19 456.01 Eu 0 0 518.23 T2u 0 0 517.13 A1u 0 0
ν20 456.01 Eu 0 0 518.23 T2u 0 0 517.24 Eu 0 0
ν21 456.07 A1g 0.24 178 518.23 T2u 0 0 517.24 Eu 0 0
ν22 471.76 Eg 0 0 522.63 T1u -0.222 200 521.86 A1g -0.281 319
ν23 471.76 Eg 0 0 522.63 T1u 0.062 16 521.86 Eg 0 0
ν24 511.54 A1u 0 0 522.63 T1u 0.163 108 521.86 Eg 0 0
ν25 543.27 A2u 0 0 678.06 T1u 0 0 677.69 A2u 0 0
ν26 622.14 Eu 0 0 678.06 T1u 0 0 677.76 Eu 0 0
ν27 622.14 Eu 0 0 678.06 T1u 0 0 677.76 Eu 0 0
ν28 2045.3 Eg 0 0 1954.81 T1u 0 0 1954.77 A2u 0 0
ν29 2045.3 Eg 0 0 1954.81 T1u 0 0 1954.77 Eu 0 0
ν30 2066.03 Eu 0 0 1954.81 T1u 0 0 1954.71 Eu 0 0
ν31 2066.03 Eu 0 0 1974.09 Eg 0 0 1974.04 Eg 0 0
ν32 2068.98 A2u 0 0 1974.09 Eg 0 0 1974.04 Eg 0 0
ν33 2169.92 A1g 0.1075 807 2084.04 A1g 0.133 1142 2084.04 A1g -0.133 1142

λv ) Σ λi ) 1834 cm-1 λv ) Σ λi ) 2257 cm-1 λv ) Σ λi ) 2266 cm-1

a K calculated assuming given state is the initial state in units of amu1/2 Å. b Reorganization energies calculated in coordinate system of the
respective state.
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two A1g modes of the anion along with two of the T2g modes
(T2g f A1g and Eg). However, this is not the case. The A1g

modes of the neutral species mix with eight modes of the anion,
the two A1g modes, and all six of the T2g modes. Similar results
are seen for the other sets of triply degenerate anion modes.
Also, if the anion is treated as the initial state,K shows
displacements in eight modes, the two A1g and six T2g modes,
as shown in Table 2.

This problem results from an implicit arbitrariness in choosing
degenerate normal modes. The convention that Gaussian follows
results in three degenerate modes, described as T2g modes, that
do not correspond to one A1g and two Eg modes in D3d

symmetry. This can be seen by the fact each T2g mode of the
anion mixes with both Eg and A1g modes of the radical instead
of only one symmetry type and how all T2g modes show a
displacement instead of only one of each degenerate set. Our
way of getting around this problem was to slightly distort the
anion intoD3d symmetry. By changingx andy coordinates by
10-5 angstroms in the correct direction, the total energy and
vibrational frequencies were very slightly shifted, but the normal
modes were treated as inD3d symmetry. The new standard
orientation resulted in structures that had the maximum number
of symmetry elements in common, makingB0 unnecessary.
Also, J properly separated into symmetry blocks, andK gave
only four displaced modes, as shown in Table 2. The resulting
vibrational reorganization energy changes slightly from the
octahedral case, from 2257 to 2266 cm-1. The determinant of
J is 0.997, very close to unity, with the discrepancy occurring
in the Eg block, which is the symmetry for rotations aroundx
and y. The 1× 1 A2g block is within 10-5 of negative one,
orthogonal within our numerical accuracy (ignoring the arbitrary
sign), even though A2g is the symmetry of the third rotation
aroundz. This means that the A2g mode of anionic and neutral
species are nearly identical, as revealed by inspection of the
normal mode output, and negligible axis-switching effects
should occur for this mode. The A1g block ofJ, shown in Table
3, reveals that very little mixing occurs in the totally symmetric
modes. This also is true for most other symmetries that are not
shown. This is not surprising since the geometry change in this
case is not large, suggesting the electron density and therefore
the force constants do not change much. However, the Eg block
does show a moderate amount of mixing. Care must be taken
since mixing of degenerate modes is not physically meaningful

due to the arbitrariness in choice and order of degenerate normal
modes. Each set of two degenerate modes must be considered
together and mixing among the set ignored. The Eg block of
the Duschinsky matrix, shown in Table 3, reveals that the third
and fourth Eg modes (ν10 andν11 of both species) are well mixed
with the fifth and sixth Eg modes (ν12 and ν13 of the neutral
species andν14 andν15 of the anion). As an example, we will
discuss the degenerate pair of radical normal modes Q′10 and
Q′11, which has significant contributions from two sets of
degenerate anion normal modes. The Q′10/Q′11 pair has contri-
butions of 0.3963 and 0.0002 from the Q10/Q11 pair and 0.9036
and 0.0021 from the Q14/Q15 pair. It must be emphasized that
the entire 2× 2 block must be considered when determining
the amount of mixing and not the individual elements when
doubly degenerate modes are considered.

The equations forJ andK are based on eq 6, wherex0 are
equilibrium coordinate vectors andF are displacement vectors.
The nonlinearity results from the displacement dependence of
B in this equation, which is ignored to get a linear transforma-
tion. One way to test the validity of the linear approximation is
to test eq 6 with displacements along various normal modes
while ignoring the coordinate dependence ofB, which is the
unit matrix in this case. Equation 6 should fail for displacements
in the A2g and Eg modes, since these have the same symmetry
as a rotation, but should remain valid for the other modes.
Rearranging eq 6 to equal zero, the root-mean-squared of the
difference of each Cartesian coordinate from zero is used as a
measure of validity. Some results are given in Figure 1, where
normal mode displacements of 1 to 2 are typically large values.
As expected, eq 6 fails for displacements in the Eg and A2g

modes, but the disagreements are small, with rms disagreements
of less than 10-3 Å for reasonable normal mode displacements,
suggesting that the linear approximation is a good one. This is
consistent with the closeness of the determinant of the Duschin-
sky matrix to unity. However, for correct FCF, one must have
a determinant equal to unity, so problems may still arise if the
Eg modes are taken into account without some sort of renor-
malization of the Eg block.

Co(CO)4. The other example is Co(CO)4
-1/0, which forms a

similar ion pair, Co(Cp)2+|Co(CO)4-, that undergoes similar ET
reactivity.19 Again, B3LYP calculations were performed with
the 6-311G basis set for cobalt and 6-311G(d,p) basis sets for
carbon and oxygen. In this case, the calculations result in a

TABLE 3: Duschinsky Matrix for the V(CO) 6/V(CO)6
- System (assuming neutral species is initial state)a

(a) A1g Block

Q4 Q13 Q22 Q33

Q′6 -0.9987 0.0475 0.0044 0.0204
Q′15 -0.0471 -0.9975 0.0521 0.0064
Q′21 -0.0057 -0.0515 -0.9972 0.054
Q′33 -0.021 -0.0082 -0.0535 -0.9983

(b) Eg Block

Q4 Q5 Q10 Q11 Q14 Q15 Q23 Q24 Q31 Q32

Q′4 -0.0004 -0.9969 0 -0.0061 -0.0002 0.0687 0 -0.0131 0.0052 0
Q′5 -0.9969 0.0004 -0.0061 0 0.0687 0.0001 -0.0131 0 0 -0.0052
Q′10 0 -0.0675 -0.0002 0.3963 0.0021 -0.9035 -0.0001 0.1345 0.0482 0
Q′11 0.0675 0 -0.3963 -0.0002 0.9036 0.0021 -0.1345 -0.0001 0 0.0482
Q′12 0.0225 0 0.9132 0.0004 0.4043 0.0009 0.0275 0 0 -0.0354
Q′13 0 0.0225 -0.0004 0.9132 -0.0009 0.4043 0 0.0275 0.0353 0
Q′22 -0.0045 0 -0.0812 -0.0001 0.1137 0.0003 0.9897 0.0009 0 -0.0322
Q′23 0 -0.0045 0.0001 -0.0812 -0.0003 0.1137 -0.001 0.9897 0.0322 0
Q′28 0 0.0081 0 -0.0488 -0.0001 0.0249 0 -0.0393 0.9976 0
Q′29 0.0081 0 -0.0488 0 0.0249 0.0001 -0.0393 0 0 -0.9976

a Values less than 10-4 ignored.Q represent anion modes, andQ′ represent neutral modes.

5330 J. Phys. Chem. A, Vol. 105, No. 22, 2001 Sando and Spears



tetrahedral geometry for the anion. For the neutral species, a
C1 geometry results. The atomic coordinates are given in Table
4, and the frequencies and symmetries of the vibrations are given
in Table 5. Although this neutral geometry is very close toC3V,
all attempts to find an optimized structure with higher thanC1

symmetry failed. The C-Co-C angles are about 99.6° and
117.3°, compared to theTd value of 109.5°. The low C1

symmetry is unfortunate since the lack of symmetry in the
neutral species does not allow the breaking of the Duschinsky
matrix into symmetry blocks, greatly complicating the analysis.
However, this allows study of a case where zero-order axis-
switching is necessary and nonlinear effects occur for all modes,
including displaced modes.

The result for calculation ofT0 from eq 12 is shown in Table
6. T0 was converted toB0, and eqs 7 and 8 were used to
calculateJ andK. The result forK is given in Table 5 along
with the corresponding vibrational reorganization energies,
which total to 4925 cm-1 in the normal coordinates of the radical
and 6183 cm-1 in the normal coordinates of the anion. These
values are much larger than for V(CO)6 and their dependence
on coordinate is much greater due to the larger Duschinsky
mixing. Two portions of the Duschinsky matrix representing
modes 1 to 8 and 10 to 21 are given in Table 7. The analysis
is much more difficult becauseJ does not form symmetry
blocks; however, it is obvious from inspection ofJ that there is
much more normal mode mixing in this case than in the
vanadium case. This is expected since there is a much larger
geometry change for Co(CO)4 than V(CO)6. For example,ν13

andν14 of the neutral species include significant contributions
from modes 10 to 17 of the anion. Also,ν15 of the neutral
species contains contributions from several anion modes,
including the high frequencyν21. Many of the diagonal elements

are near 0.5, signifying a significant contribution from other
modes. The large Duschinsky effect suggests that ion pairs
involving Co(CO)4 are examples of systems where including
the Duschinsky effect in calculated electron-transfer rates may
be important. In another manuscript2 we have developed a
general model for the Duschinsky effect in electron transfer that
shows large rate enhancement for inverted region electron
transfer.

The determinant ofJ is 0.983, close to unity, but not as close
as the previous example. This suggests that the vibrational
normal modes of the anion are not as well represented by
combinations of vibrational normal modes of the other state
without including rotations, leading to larger axis-switching
effects. In fact, since the neutral species has no symmetry, axis-
switching effects need to be taken into account for every mode.
B0, the zero-order axis-switching matrix, is correct only at the
equilibrium geometry of either state, but any displacements from
equilibrium will cause eq 6 to fail. Some results, including the
smallest and largest failures, are given in Figure 2. Larger
disagreements are seen for certain modes of Co(CO)4 than for
either the A2g or Eg modes of V(CO)6, as would be expected
based on the determinant ofJ. Errors in calculated FCF are
expected not only due to the value of the determinant but also
due to the nonlinear effects that are ignored in the zero-order
axis-switching approximation. The vibrational wave functions
have width, so for correct FCF the coordinate dependence ofB
must be known and the nonlinear effects would have to be
included in the FCF, which is not currently possible. However,
the coordinate dependence ofB should not be large in the region
important for FCF calculations, which is between the equilibrium
geometry of the two states, and the failure of eq 6 is small for

Figure 1. Root-mean-square (rms) disagreement of each Cartesian
coordinate in eq 6 for displacements along several Eg and A2g normal
modes for the V(CO)6 system. The coordinate dependence of B is
ignored.

TABLE 4: Standard Orientation Atomic Coordinates (in
angstroms) for Co(CO)4 and Co(CO)4-

Co(CO)4 Co(CO)4-

x y z x y z

Co 0.000004-0.000318 -0.212456 0 0 0
C -0.000015 -0.000402 1.628417 1.01298 1.01298 1.01298
C -1.555843 -0.897775 -0.516878 -1.01298 -1.01298 1.01298
C 0.000098 1.795842-0.516414 -1.01298 1.01298 -1.01298
C 1.555765-0.897933 -0.516847 1.01298 -1.01298 -1.01298
O -0.000042 -0.000817 2.766589 1.683685 1.683685 1.683685
O -2.530524 -1.459219 -0.703171 -1.683685 -1.683685 1.683685
O 0.000157 2.920787-0.701967 -1.683685 1.683685-1.683685
O 2.530393-1.459475 -0.70312 1.683685-1.683685 -1.683685

TABLE 5: Calculated Vibrational Frequencies, Symmetries,
and Displacements for the Co(CO)4/Co(CO)4- System

Co(CO)4 Co(CO)4-

ν (cm-1) K a λi (cm-1)b ν (cm-1) K a λi (cm-1)b

ν1 59.75 -0.0055 0 72.37 E -0.0036 0
ν2 59.87 -0.0148 0 72.37 E 0.0036 0
ν3 80.74 -0.0544 0 85.65 T2 -1.6548 298
ν4 80.9 -0.0455 0 85.65 T2 -1.5274 254
ν5 85.05 2.7752 826 85.65 T2 -1.8185 360
ν6 267.94 0.0006 0 315.59 T1 -0.001 0
ν7 268.1 0.004 0 315.59 T1 0 0
ν8 287.31 0.0009 0 315.59 T1 0.001 0
ν9 394.65 0.6389 943 477.58 A1 -0.325 357
ν10 394.92 -0.3739 323 538.3 E 0.0002 0
ν11 396.38 -0.0354 3 538.3 E -0.0001 0
ν12 431.85 -0.3364 313 544.66 T2 0.2149 203
ν13 469.78 -0.0029 0 544.66 T2 0.2161 205
ν14 469.86 -0.0155 1 544.66 T2 0.1842 149
ν15 477.27 -0.7805 2058 574.75 T2 -0.483 1143
ν16 482.5 -0.0511 9 574.75 T2 -0.1594 124
ν17 483.15 0.0079 0 574.75 T2 -0.2756 372
ν18 2095.16 0.0001 0 1967.67 T2 0.0269 42
ν19 2095.22 0.0001 0 1967.67 T2 0.0266 41
ν20 2106.64 -0.028 52 1967.67 T2 0.0264 40
ν21 2179.74 -0.0751 397 2070.03 A1 0.2021 2595

λv ) Σ λi ) 4925 cm-1 λv ) Σ λi ) 6183 cm-1

a K calculated assuming given state is the initial state in units of
amu1/2 Å. b Reorganization energies calculated in coordinate system of
the respective state.

TABLE 6: Calculated T 0 for the Co(CO)4/Co(CO)4- System
(assuming neutral species is initial state)

x y z

0.70708 -0.40846 0.57723
0.00003 0.81632 0.5776

-0.70713 -0.40839 0.57722
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reasonable displacements. In addition, the greatest failure of eq
6 occurs for modes with displacements near zero, which have
the smallest importance for FCF calculations. In light of this,
the zero-order approximation does appear to be a good ap-
proximation and is the best currently available.

Application to Electron-Transfer Rate Calculations

The goal of this paper has been to demonstrate how
complications arise in applying the Duschinsky effect to specific
molecules. All phenomena involving radiative or nonradiative
transitions can be impacted by the Duschinsky effect, and it
has been generally ignored in electron-transfer models. There
have been many studies including the Duschinsky effect in
absorption20-27 and resonance Raman28-30 spectral simulation.
However, very few studies of rate processes17,31-33 have
included the Duschinsky effect, and none are systematic. In a
related paper,2 we have performed the first systematic study
that demonstrates the major importance of the Duschinksy effect
to ET rates in the inverted region. Those results were not

molecule specific, so further application to real systems requires
the methods of this paper.

For electron-transfer rate calculations, a basic sum over states
Fermi’s golden rule implementation can be used. This results
in eq 13.34,35

In eq 13, i is the initial (excited) state, f is the final (ground)
state,Hab is the electronic coupling of the two states,λs is the
solvent reorganization energy,E00 is the free energy difference,
ø is the vibrational wave function,P(εi) is the distribution of
initial vibrational states. Equations 14 and 15 can be used for
absorption and emission spectra respectively, with the identities
of the initial and final states reversed for absorption versus
emission spectra.35

Equations 13-15 can be used in conjunction with any of the
previously published methods3,6-10 for calculating multidimen-
sional FCF.

Conclusion

We have presented an analysis of complexities that can occur
when applying the Duschinsky effect to real molecules. There

TABLE 7: Portions of the Duschinsky Matrix for the Co(CO) 4/Co(CO)4- System (assuming neutral species is initial state)a

(a) Modes 1 to 8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q′1 -0.8718 0.2352 -0.0029 -0.3173 0.2684 -0.0169 -0.0082 0.0092
Q′2 0.2319 0.8724 0.3391 -0.1522 -0.1877 -0.0003 0.0139 0.0134
Q′3 -0.3548 -0.2201 0.5297 0.223 -0.6994 0 0.0013 0.0004
Q′4 0.216 -0.3488 0.5013 -0.7443 0.1424 -0.0008 -0.0001 0.0005
Q′5 -0.0026 -0.0062 0.5779 0.5053 0.6007 -0.0008 0.0004 0.0009
Q′6 0.0047 0.0019 0.0025 0.0021 -0.0035 -0.5742 -0.7422 -0.2076
Q′7 -0.004 0.0046 0.0035 -0.003 0.001 0.5414 -0.2045 -0.7669
Q′8 0.0003 0.0003 0.0008 0.0002 -0.0006 0.5707 -0.5975 0.5632

(b) Modes 10 to 21

Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

Q′10 0.7027 -0.1212 0.2332 -0.3425 -0.1425 -0.1267 -0.161 0.0466 -0.0191 -0.0493 0.0651 0.0213
Q′11 -0.166 -0.8045 0.0861 0.2358 -0.4089 0.094 -0.1121 -0.1229 -0.075 0.0575 0.0182 0.0027
Q′12 0.0048 -0.0013 0.3489 0.3512 0.3008 0.6006 0.2005 0.3421 0.0162 0.0159 0.0163 0.008
Q′13 0.1853 0.3655 -0.0129 0.5642 -0.641 -0.1577 0.0954 0.217 -0.0138 0.0146 -0.001 -0.0005
Q′14 -0.3643 0.1887 0.6916 -0.3708 -0.3384 -0.0231 0.2504 -0.1285 -0.0094 -0.0081 0.015 -0.0031
Q′15 -0.015 0.0004 0.4459 0.4562 0.3927-0.5318 -0.2358 -0.2699 -0.037 -0.0363 -0.0374 -0.1304
Q′16 0.2544 -0.1474 -0.1043 0.0999 0.0987 -0.1085 0.8399 -0.3916 -0.0048 -0.004 0.0016 -0.0085
Q′17 -0.1478 -0.2547 0.0049 -0.1205 0.1203 -0.5035 0.2788 0.7355 -0.0025 0.0036 0 0.0013
Q′18 -0.0275 -0.1057 0.0093 0.032 -0.0482 0.0065 -0.0066 -0.0082 0.7541 -0.6147 -0.1395 -0.0003
Q′19 0.1064 -0.028 0.0455 -0.0336 -0.0134 -0.0011 -0.0097 0.0072 0.2731 0.5147-0.7915 0.0002
Q′20 0.0003 -0.0006 -0.0196 -0.0195 -0.0169 0.0493 0.0163 0.028 -0.5761 -0.5764 -0.5735 0.0278
Q′21 -0.0003 0.0002 0.0689 0.0689 0.0588-0.065 -0.0216 -0.037 0.0097 0.0093 0.0097 0.9876

a Values less than 10-4 ignored.Q represent anion modes, andQ′ represent neutral modes.

Figure 2. Root-mean-square disagreement (rms) of each Cartesian
coordinate in eq 6 for displacements along several normal modes for
the Co(CO)4 system. The coordinate dependence of B is ignored.

kET )
2π

p
Hab

2 (4πλskBT)-1/2 ×

∑
i

P(εi)∑
f

〈øi|øf〉
2 exp[-(-E00 + εf - εi + λs)

2

4λskBT ] (13)

A(ω) ∝

ω∑
i

P(εi)∑
f

〈øi|øf〉
2 exp[-(ω - E00 - εf + εi - λs)

2

4λskBT ] (14)

E(ω) ∝

ω3∑
i

P(εi)∑
f

〈øi|øf〉
2 exp[-(ω - E00 + εf - εi + λs)

2

4λskBT ] (15)
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are subtle nonlinear transformation issues that can arise for
transitions between two states, and these are discussed in general
terms and for specific molecular examples. These nonlinear
effects cannot be taken into account in FCF calculations;
however, we have shown these to be small enough to be
neglected through use of the zero-order axis-switching ap-
proximation. In addition, we identified a problem that arises
from nonorthogonality of the Duschinsky matrix, and a correc-
tion method must still be tested before exact results can be
obtained from FCF calculations. The Duschinsky effect has been
calculated for two molecules involved in electron-transfer
reactions of ion pairs. The anion part of the pairs, V(CO)6

-

and Co(CO)4-, and their respective neutral species, have been
included in the calculations. The vanadium species undergoes
a geometry change from an octahedral anion to aD3d neutral
species. However, the accompanying geometrical changes are
small and result in small Duschinsky effects. The calculation
illustrated how to perform the computations to allow correct
description of degenerate normal modes and how to describe
mixing among degenerate modes. In addition, a method of
testing the linear approximation was developed that shows its
validity for this molecule. On the other hand, the cobalt species
undergoes a much greater geometrical distortion from the
tetrahedral anion into a nearlyC3V neutral species ofC1

symmetry. This results in a much larger Duschinsky effect, and
the lack of symmetry in the neutral species greatly complicates
the analysis of the Duschinsky matrix since it does not break
into symmetry blocks. The cobalt molecule is a case where zero-
order axis-switching is necessary, and nonlinear effects occur
for all modes, including displaced modes. The absolute reor-
ganization energy and coordinate dependence of the reorganiza-
tion energy were much larger for this molecule. We briefly
outlined methods of applying such computations to electron-
transfer rates that can be generalized to many rate processes.
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